
Benchmark Generation via L-Systems
Vinicius Francisco da Silva

UFMG
Belo Horizonte, Brazil

silva.vinicius@dcc.ufmg.br

Fernando Magno Quintão Pereira
UFMG

Belo Horizonte, Brazil
fernando@dcc.ufmg.br

Abstract—L-systems are a mathematical formalism proposed
by biologist Aristid Lindenmayer with the aim of simulating
organic structures such as trees, snowflakes, flowers, and other
branching phenomena. They are implemented as a formal language
that defines how patterns can be iteratively rewritten. This
paper describes how such a formalism can be used to create
artificial programs written in the C programming language.
These programs, being large and complex, can be used to test
the performance of compilers, operating systems, and computer
architectures. This paper demonstrates the usefulness of these
benchmarks in two ways. First, it explains how such programs
allow check of the complexity of different phases of the compilation
process. Second, it shows how these programs allow for the
comparison of C compilers, such as gcc, clang, and tcc, in terms
of compilation time, size, and speed of the generated code.

Index Terms—Fractal, Code generation, Program synthesis.

I. Introduction

Compilers are complex tools whose testing relies on pro-
grams written in the target language. However, the number of
available benchmarks for any given compiler is often limited [7].
To address this shortcoming, several tools have been developed
that automatically generate test programs [9]. This process,
known as fuzzing [6], is a widely adopted methodology for
uncovering bugs such as crashes and memory leaks. In the
domain of compilers, fuzzers like Csmith [9] and YARPGen [5]
are capable of generating random C programs for stress testing
and static analysis. More recently, fuzzers such as Fuzz4All [8]
have leveraged Large Language Models (LLMs) to produce test
programs not only for compilers but also for constraint solvers,
interpreters, and software systems with accessible APIs.

Despite the abundance of tools for generating random
compiler inputs [9], current systems exhibit several limitations.
One key issue is the lack of control over the size of the generated
programs. For example, Csmith—the most well-known fuzzer
of C compilers—does not provide any mechanism to tune the
output size. Instead, it produces programs whose sizes follow
a normal distribution. When compiled with Clang v9.0.1 using
the -O0 flag, these programs typically contain an average
of 20,190 LLVM instructions, with a standard deviation of
3,650 and a median of 19,161 instructions [2]. Other fuzzers,
such as YARPGen [5], LDRGen [1], and Orange3 [3], display
similar behavior. As a result, these tools are less suited for
performance testing of compiler components such as parsing,
semantic analysis, or code generation.
Programs via L-Systems. To overcome this limitation,
this paper proposes a methodology to stress-test compilers

for performance, instead of correctness. This methodology
allows the generation of programs whose size can be precisely
controlled by the user. This approach enables the creation of
synthetic code of virtually arbitrary size, constrained only by
available resources such as code generation time and storage
space.

The central idea of this work builds on the observation
that programs often exhibit recursive, self-similar structure.
For instance, the branches of a control structure (e.g., if-
then-else) are themselves programs that may contain further
control structures. To exploit this observation, we introduce a
program generation method based on L-systems [4]. Originally
developed by Aristid Lindenmayer to model the growth of
biological organisms, L-systems provide a formal grammar-
based framework that we extend to code generation. This
paper describes how families of self-similar programs can
be captured by a specific L-grammar. From such grammars,
program structures are generated through iterative rewriting.
Each resulting string corresponds to the blueprint of a program
built around a core data structure, such as an array or a list.

II. L-Systems
An L-system (or Lindenmayer system) is a formal model

based on rewriting rules, originally devised to describe the
growth patterns of plants and other fractal-like structures. It
comprises an alphabet of symbols, a set of production rules
that define how symbols are transformed, and an initial string
(the axiom) that serves as the starting point. At each iteration,
the rules are recursively applied to the current string, producing
increasingly complex sequences. Example 1 illustrates how this
formalism operates.

Example 1. Figure 1 presents an example of an L-system. The
rules used in this system generate geometric patterns through
string rewriting. Starting from the axiom A, the productions
specify how symbols evolve at each step: A → B−A−B and
B → A+B+A. Here, the symbols − and + represent rotations
of 60 and 300 degrees, respectively. Repeated application
of these rules generates sequences that, when interpreted
graphically, produce intricate fractal curves, such as the well-
known Sierpinski Triangle.

A. Programs as Self-Similar Structures
L-systems exhibit a property known as self-similarity, mean-

ing that structures contain smaller copies of themselves across

[Axiom]
A

[Productions]
A = B - A - B
B = A + B + A

[Semantics]

[-] 60o

[+] 300o

[A] Linha
[B] Linha

Strings:

A

B−A−B

A+B+A−B−A−B−A+B+A

B−A−B+A+B+A+B−A−B−
A+B+A−B−A−B−A+B+A−
B−A−B+A+B+A+B−A−B

…

Fig. 1. L-system describing the Sierpinski Triangle.

different scales. In the context of L-systems, this feature
arises naturally from the recursive application of rewriting
rules, producing patterns that preserve the same shape at
progressively finer levels of detail. This behavior is evident in
fractals like the Sierpinski Triangle seen in Example 1, where
each component is a scaled-down replica of the whole. Such
hierarchical repetition is key to modeling phenomena like plant
growth, coastlines, and tree branching.

Self-similarity also emerges in computer programs, which
often embody recursive and hierarchical structures. Many
programs are composed of smaller functions that may in-
voke themselves or be embedded within one another, as
in if-then-else blocks or loops. Modularity and code
reuse further reinforce this pattern: generic routines can be
instantiated repeatedly across different abstraction levels, as
Example 2 explains.

Example 2. Figure 2 illustrates the concept of self-similarity
in code using a nested if-then-else block. Initially, a
function g(x) contains a single conditional. However, it
can be recursively expanded to g(x) = if g(x) then
g(x) else g(x), forming a self-referential structure. Such
recursive definitions naturally lead to self-similarity and are
common in syntactical constructs that encode control-flow in
programs.

g(x) = if
 then
 else

g(x) = if g(x)
 then g(x)
 else g(x)

if

then else

if

then else

if

then else

if

then else

Fig. 2. The self-similar nature of computer code.

Summary of Ideas This paper leverages the principle of self-
similarity to generate C programs that are both well-defined

and arbitrarily complex. The generation model is based on
an L-grammar, akin to the one illustrated in Example 1, but
instead of producing geometric patterns, it synthesizes C code
constructions with executable semantics.

III. Code Generation via L-Systems

The tool LGen, developed in this work, generates C programs
that manipulate data structures. Section III-A introduces the
core building blocks used in program construction, while
Section III-B describes semantics of these building blocks.

A. Syntactical Building Blocks

The L-systems described in this paper are built from two
families of constructs:

• Structure: elements that define the control flow of a
program, including IF, LOOP, and CALL.

• Behavior: operations that specify how data is manipulated,
including new, insert, remove, and contains.

1) Structure Blocks: The control flow in programs generated
by LGen arises from combining four types of code blocks, as
specified by the grammar below:

b ::= IF(bcond, bthen) ; ; if then
| IF(bcond, bthen, belse) ; ; if then else
| LOOP(bcond, bbody) ; ;while
| CALL(b) ; ; function call

Each of these constructs corresponds to a familiar
programming construct: conditional branches (if-then,
if-then-else), loops (while), and function calls. Ex-
ample 3 provides an illustration.

Example 3. Figure 3 shows a grammar designed to synthesize
programs. The right-hand side illustrates two derivation steps
from this L-grammar, along with a corresponding (simplified)
C program produced from the second derivation.

[Productions]
A = insert IF(B, LOOP(A)) remove
B = search IF(CALL(A), _)

[Axioma]
A

Iteration 1:
insert IF(B, LOOP(A)) remove

Iteration 3:
insert IF(search IF(CALL(A), _),
LOOP(insert IF(B, LOOP(A)) remove))
remove

void f(struct S s, ulong path) {
 insert(3, s);
 if (path & 1) {

B(s);
 } else {

for (int i0 = 0; i0 < 5; i0++) {
 A(s);

}
 }
 remove(6, s);
}

Fig. 3. Example of an L-grammar used to define programs.

2) Behavior Blocks: The dynamic behavior of LGen pro-
grams emerges from interactions with data structures. All
data structures within a program must share the same type.
Currently, LGen supports arrays of integers and sorted linked
lists of integers. The supported operations are defined by four
constructs in the L-grammar:

• new: Creates and initializes a data structure.
• insert: Adds an element to a data structure in scope.
• remove: Deletes an element from a data structure in scope.
• contains: Checks whether an element exists in a data

structure in scope.
Users of LGen define the implementation of each behavior

block. As such, the semantics of these operations depends on
user-provided code. Example 4 demonstrates how three such
operations may be defined for programs working with arrays.

Example 4. Figure 4 shows C code generated to manipulate
arrays. Although a program may handle many arrays, the
example focuses on a specific variable, array156. The
operations new(), insert(), and contains() must be
customized by the user to define the behavior of the generated
code.

array_t* array156;
array156 = (array_t*)malloc(sizeof(array_t));
array156->size = 42;
array156->refC = 1;
array156->id = 156;
array156->data = (unsigned int*)malloc(array156->size*sizeof(unsigned int));
memset(array156->data, 0, array156->size*sizeof(unsigned int));
DEBUG_NEW(array157->id);

unsigned int loop46 = 0;
unsigned int loopLimit46 = (rand()%loopsFactor)/2 + 1;
for(; loop46 < loopLimit46; loop46++) {
 for (int i = 0; i < array156->size; i++) {
 array156->data[i]--;
 }
}

unsigned int loop46 = 0;
unsigned int loopLimit46 = (rand()%loopsFactor)/2 + 1;
for (int i = 0; i < array156->size; i++) {
 if (array156->data[i] == 61) {
 break;
 }
}

new

insert

constains

Fig. 4. Examples of block definitions for new, insert, and contains.

B. Execution Flow
Programs generated by LGen are executable. Their con-

trol flow is governed by a variable named path, of type
unsigned long, which determines the outcome of condi-
tional branches. Specifically, the i-th bit of path defines the
result of all conditional tests at nesting depth i. This mechanism
is clarified in Example 5.

Example 5. Figure 5 depicts the control flow graph of a
program organized into nested regions. Each region has a
defined nesting depth: a region R at depth d is nested within d
other regions. The outcome of the conditional that initiates R

is controlled by the d-th bit of path. For example, in Figure 5,
the conditional in the block path % 9 is governed by path
& 2, since it lies within two enclosing regions.

%1

%9%15

%13

%14

%16

%38

%19 %37

%23%24

%33

%25

%34

%28 %32

%29

void f(struct S s, unsigned long path) {
 insert(3, s);
 if (path & 1) {
 search(4, s);
 if (path & 2) {
 A(s);
 }
 } else {
 for (int i0 = 0; i0 < path & 0xFF; i0++) {
 insert(6, s);
 if (path & 2) {
 B(s);
 } else {
 for (int i1 = 0; i1 < path & 0xFF; i1++) {
 A(s);
 }
 }
 rem(3, s);
 }
 }
 rem(4, s);
}

The constant is 2d, where
d is the nesting factor of
the control structure

01

2

3

2

4
The parameters of
operations such as
insert and remove are
randomly chosen

The mask of loop
limits is determined
by the user.

Fig. 5. The control flow of a synthetic program is determined by the path
parameter.

1) Function Calls: LGen supports function calls through
the CALL clause. When an L-string includes a construction
of the form CALL(e), the entire substring e is extracted and
defined as a separate function. Example 6 illustrates in detail
how interprocedural code generation is handled.

Example 6. Figure 6 depicts the control flow produced by a
CALL block. The enclosed string gives rise to a new function,
which becomes part of the synthesized program. This new
function is invoked at the point in the L-string where the CALL
clause appears.

insert
IF(
 search
 IF(
 CALL(
 insert
 IF(
 B,
 LOOP(A)
)
 remove
),
 _
),
 LOOP(…)
)
remove

The code block located
within a CALL construct
originates a new function in
the generated benchmark.

Fig. 6. Control flow of a program containing a CALL block.

Note that all occurrences of CALL(b) with identical strings
b result in calls to the same function. To avoid redundancy,
LGen maintains a table mapping strings to functions, ensuring

that identical strings refer to the same function instance. The
functions generated from a given L-specification can be either
grouped into a single file or distributed across multiple files,
depending on a configuration parameter in LGen.

a) Parameter Passing: Functions generated by LGen
receive two parameters:

• Data: an array of data structures that enables sharing
between caller and callee functions.

• Path: a control variable that governs execution flow, as
described in Example 5.

The Data array is populated using a reaching definitions
analysis, which determines which variables in the caller
function are available to be passed as arguments at the call
site. Example 7 illustrates this mechanism.

Example 7. Figure 7 illustrates parameter passing in a
program generated by LGen. At the function call site, a
reaching definitions analysis identifies three available variables:
array1, array156, and array157. Pointers to these
variables are inserted into the param.data structure, which
is passed to function func0. Inside the callee, the passed
variables are copied into new ones using the new construct.
Each variable is copied exactly once. If no additional parame-
ters are available for copying, subsequent new operations will
create fresh variables, as seen in Example 5.

array_t* func6(array_t_param* vars, const unsigned long PATH0) {
 size_t pCounter = vars->size;
 array_t* array1;
 if (pCounter > 0) {
 array1 = vars->data[--pCounter];
 array1->refC++;
 } else {
 array1 = (array_t*)malloc(sizeof(array_t));
 array1->size = 386;
 array1->refC = 1;
 array1->id = 1;
 array1->data = (unsigned int*)malloc(array1->size*sizeof(unsigned int));
 memset(array1->data, 0, array1->size*sizeof(unsigned int));
 } ... }

Code of callee function, which implements the new construct

If there are still parameters
available, the NEW construct
copies one of these parameters
to the new variable.

Otherwise, a new data structure
is created, as seen in Figure 4.

array_t_param params1;
params1.size = 3;
params1.data = (array_t**)
 malloc(params1.size*sizeof(array_t*));
params1.data[0] = array0;
params1.data[1] = array156;
params1.data[2] = array157;
array_t* array158 = func6(¶ms1, path);

Code of caller function, which implements the CALL construct

The analysis of reaching definitions
determines that three variables are
available at the point of call. These
variables are passed as
parameters to the called function.

Fig. 7. Parameter passing in programs created by LGen.

2) Memory Management: Programs generated by LGen do
not suffer from memory leaks, despite frequently relying on
heap allocation. To prevent leaks, LGen employs a reference-
counting garbage collector. This approach tracks how many
references (pointers) exist to each dynamically allocated object.
When a reference is created, the count is incremented; when it is
removed, the count is decremented. Once the count reaches zero,
the object is no longer reachable and can be safely deallocated.
To support this mechanism, each structure created by LGen
includes an additional field, refC, which stores the current

reference count. Example 8 shows how reference counting is
used in LGen to prevent memory leaks from happening.

Example 8. Figure 8 illustrates how LGen uses reference
counting to manage memory. In this example, two variables, x
and y, initially point to two separate heap-allocated structures.
Each of these structures contains a refC field that holds the
number of active references to the object. When the assignment
x := y occurs, the reference count of the structure originally
pointed to by x is decremented, as x no longer refers to it.
If this decrement causes refC to reach zero, the structure
is automatically deallocated. Meanwhile, the reference count
of the structure pointed to by y is incremented to account
for the new reference from x. After the assignment, both x
and y point to the same object, whose refC now reflects two
active references. This mechanism ensures that heap-allocated
memory is reclaimed as soon as it is no longer reachable,
preventing memory leaks in programs generated by LGen.

typedef struct {
 unsigned int* data;
 size_t size;
 size_t refC;
 int id;
} array_t;

Definition of the Array Data Strucgure

Data structures created via LGen
are defined with meta data,
including a reference counter.

array_t* arr1 = arr0;
arr0->refC++;

Variable assignment, e.g., as due to parameter passing

The new clause can cause a variable
assignment if there are parameters available for
assignment (see example 3.5).

{ …
 arr0->refC—;
 if (!arr0->refC) {
 free(arr0->data);
 free(arr0);
 }
}

Variable definition leaves scope

A variable goes out of scope when the block in
which it is defined ends. In this case, the
counter associated with that variable is
decremented. When it reaches zero, the
variable is deallocated.

Fig. 8. Reference counter implementation.

Acknowledgment
This project is supported by Google and by FAPEMIG (Grant

APQ-00440-23). We thank Xinliang (David) Li and Victor Lee
for their efforts in making the Google sponsorship possible.

References
[1] Gergö Barany. Liveness-driven random program generation. In LOPSTR,

pages 112–127, Heidelberg, Germany, 2017. Springer.
[2] Anderson Faustino da Silva, Bruno Conde Kind, José Wesley de Souza Ma-

galhães, Jerônimo Nunes Rocha, Breno Campos Ferreira Guimarães, and
Fernando Magno Quintão Pereira. AnghaBench: A suite with one million
compilable C benchmarks for code-size reduction. In CGO, pages 378–390,
Los Alamitos, CA, USA, 2021. IEEE.

[3] Kota Kitaura and Nagisa Ishiura. Random testing of compilers’ per-
formance based on mixed static and dynamic code comparison. In
Proceedings of the 9th ACM SIGSOFT International Workshop on
Automating TEST Case Design, Selection, and Evaluation, A-TEST 2018,
page 38–44, New York, NY, USA, 2018. Association for Computing
Machinery.

[4] Aristid Lindenmayer. Mathematical models for cellular interactions in
development i. filaments with one-sided inputs. Journal of theoretical
biology, 18(3):280–299, 1968.

[5] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. Random testing
for c and c++ compilers with yarpgen. Proc. ACM Program. Lang.,
4(OOPSLA), November 2020.

[6] Valentin J.M. Manes, HyungSeok Han, Choongwoo Han, Sang Kil Cha,
Manuel Egele, Edward J. Schwartz, and Maverick Woo. The art, science,
and engineering of fuzzing: A survey. IEEE Transactions on Software
Engineering, 47(11):2312–2331, 2021.

[7] Zheng Wang and Michael F. P. O’Boyle. Machine learning in compiler
optimization. Proceedings of the IEEE, 106(11):1879–1901, 2018.

[8] Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel,
and Lingming Zhang. Fuzz4all: Universal fuzzing with large language
models. In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, ICSE ’24, New York, NY, USA, 2024. Association
for Computing Machinery.

[9] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding
and understanding bugs in c compilers. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’11, page 283–294, New York, NY, USA, 2011.
Association for Computing Machinery.

	Introduction
	L-Systems
	Programs as Self-Similar Structures

	Code Generation via L-Systems
	Syntactical Building Blocks
	Structure Blocks
	Behavior Blocks

	Execution Flow
	Function Calls
	Memory Management

	References

